Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
2.
West J Emerg Med ; 23(5): 716-723, 2022 Aug 28.
Article En | MEDLINE | ID: mdl-36205678

INTRODUCTION: Research suggests that pain assessment involves a complex interaction between patients and clinicians. We sought to assess the agreement between pain scores reported by the patients themselves and the clinician's perception of a patient's pain in the emergency department (ED). In addition, we attempted to identify patient and physician factors that lead to greater discrepancies in pain assessment. METHODS: We conducted a prospective observational study in the ED of a tertiary academic medical center. Using a standard protocol, trained research personnel prospectively enrolled adult patients who presented to the ED. The entire triage process was recorded, and triage data were collected. Pain scores were obtained from patients on a numeric rating scale of 0 to 10. Five physician raters provided their perception of pain ratings after reviewing videos. RESULTS: A total of 279 patients were enrolled. The mean age was 53 years. There were 141 (50.5%) female patients. The median self-reported pain score was 4 (interquartile range 0-6). There was a moderately positive correlation between self-reported pain scores and physician ratings of pain (correlation coefficient, 0.46; P <0.001), with a weighted kappa coefficient of 0.39. Some discrepancies were noted: 102 (37%) patients were rated at a much lower pain score, whereas 52 (19%) patients were given a much higher pain score from physician review. The distributions of chief complaints were different between the two groups. Physician raters tended to provide lower pain scores to younger (P = 0.02) and less ill patients (P = 0.008). Additionally, attending-level physician raters were more likely to provide a higher pain score than resident-level raters (P <0.001). CONCLUSION: Patients' self-reported pain scores correlate positively with the pain score provided by physicians, with only a moderate agreement between the two. Under- and over-estimations of pain in ED patients occur in different clinical scenarios. Pain assessment in the ED should consider both patient and physician factors.


Emergency Service, Hospital , Triage , Adult , Female , Humans , Male , Middle Aged , Pain/diagnosis , Pain/etiology , Pain Measurement , Prospective Studies
3.
PLoS One ; 15(10): e0240022, 2020.
Article En | MEDLINE | ID: mdl-33002038

Neurodegenerative diseases (NDDs) are becoming a major threat to public health, according to the World Health Organization (WHO). The most common form of NDDs is Alzheimer's disease (AD), boasting 60-70% share. Although some debates still exist, excessive aggregation of ß-amyloid protein (Aß) and neurofibrillary tangles has been deemed one of the major causes for the pathogenesis of AD. A growing number of evidences from studies, however, have suggested that reactive oxygen species (ROS) also play a key role in the onset and progression of AD. Although scientists have had some understanding of the pathogenesis of AD, the disease still cannot be cured, with existing treatment only capable of providing a temporary relief at best, partly due to the obstacle of blood-brain barrier (BBB). The study was aimed to ascertain the neuroprotective effect of thermal cycle hyperthermia (TC-HT) against hydrogen peroxide (H2O2) and Aß-induced cytotoxicity in SH-SY5Y cells. Treating cells with this physical stimulation beforehand significantly improved the cell viability and decreased the ROS content. The underlying mechanisms may be due to the activation of Akt pathway and the downstream antioxidant and prosurvival proteins. The findings manifest significant potential of TC-HT in neuroprotection, via inhibition of oxidative stress and cell apoptosis. It is believed that coupled with the use of drugs or natural compounds, this methodology can be even more effective in treating NDDs.


Amyloid beta-Peptides/toxicity , Hydrogen Peroxide/toxicity , Hyperthermia, Induced , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Cell Line, Tumor , Cyclic AMP Response Element-Binding Protein/metabolism , Gene Expression Regulation/drug effects , Heat-Shock Proteins/metabolism , Humans , Insulysin/metabolism , Matrix Metalloproteinases/metabolism , NF-E2-Related Factor 2/metabolism , Proteasome Endopeptidase Complex/metabolism
4.
Sci Rep ; 9(1): 13311, 2019 Sep 16.
Article En | MEDLINE | ID: mdl-31527642

Methylammonium lead chloride (CH3NH3PbCl3 or MAPbCl3) single crystals were fabricated using the inverse temperature crystallization method, and their structural, photophysical, and electronic characteristics were studied using temperature dependent optical spectroscopy, X-ray diffraction (XRD), current-voltage, and Hall measurements. The changes in absorption and photoluminescence properties accompanied with structural changes in crystal lattice were studied within a broad temperature range of 300-20 K. XRD investigations reveal that phase changes took placed around 180 K and 175 K. At a temperature below 170 K, two different crystallographic phases were found to co-exist in the photoluminescence spectra. An asymmetric line shape with broad and weak shoulders near the absorption edges was observed in all of the major PL peaks. The weak shoulders are attributed to the missing chloride atoms on the crystal surface. The photoluminescence intensity of the crystals was strongly influenced by the environment, thereby indicating that the carrier recombination is affected by the physical desorption/absorption of gas molecules at the crystal surface. Moreover, vibronic replicas in the photoluminescence spectra at low temperature were observed for the first time. The origins of these replicas are attributed to the coupling between the vibrational/librational motions of the organic cations and the photoexcited electrons. Finally, the Hall and current-voltage measurements confirm that the crystal is an n-type semiconductor with a carrier concentration of ~2.63 × 1011 cm-3, a mobility of 4.14 cm2/V•s, and a conductivity of 1.8 × 10-8 Ω-1 cm-1 under dark and room temperature conditions.

...